
1.  Introduction
Cements in the Martian crust can have multiple origins, including ice frozen from liquid water or condensed from 
vapor, hydrated minerals formed in situ, or minerals precipitated from aqueous fluids (e.g., salts, carbonates, and 
sulfates). The presence, amount, and composition of ice and other mineral cements in the shallowest sections 
of the Martian crust have implications for robotic and human exploration of Mars, the processes that shape and 
shaped the surface, and the search for past or extant life. Research on these topics is central to determining if Mars 
ever supported life, to understand the climate history and processes, to understand Mars as a geological system, 
and to prepare for human exploration.

Cementation affects and records geological processes. Cement can strengthen sediments (herein defined to 
include regolith and all other granular media layers) by creating stiffer contacts between particles. Cementation 
affects the permeability and porosity of sediments and fractured rocks, which impacts gas transport driven by 
atmospheric pressure changes (Morgan et al., 2021). Pores and fractures filled with ice or other mineral cement 
could confine any deeper liquid water, creating aquifers (Carr, 1979). Ground ice can promote weak explosive 
eruptions at rootless cones on lava flows (Brož et al., 2021) and may promote phreatomagmatic eruptions (Moitra 
et al., 2021). Cemented sediments are less prone to eolian and fluvial transport and erosion. The distribution of 
cements in the Martian sediments may record the accumulation and transport of volatiles in geologically recent 
times (Dundas et al., 2021). Cements may also preserve organic compounds diagnostic of past or present biolog-
ical activity (Rivera-Valentín et al., 2020).

Cementation impacts human exploration, and a primary motivation for the Mars Ice Mapper mission concept 
is to map ice in the shallowest crust (Davis & Haltigin, 2021). The presence of ice and hydrated minerals in 
shallow sediments and fractured rocks could provide a source of water for in situ resource utilization (Piqueux 
et al., 2019). Cementation-induced strengthening of sediments affects foundations used for engineering infrastruc-
ture (Kalapodis et al., 2020). Cemented sediments can be used as a construction material (Liu et al., 2021) and 
have prompted studies of a range of Mars simulants in preparation for future human missions (Karl et al., 2021).
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Efforts to map and study shallow subsurface ice and other mineral cements integrate complementary insights 
from direct and indirect observations. Direct, in situ measurements of ice and other mineral cements at specific 
landing sites are possible, yet sometimes challenging. The Phoenix lander excavated ice in the upper few cm 
(Morgan et al., 2021). Eolian processes and impact brecciation created a 10–30 m thick regolith (including a 
sand horizon in the upper 3 m) at the InSight (Interior Exploration using Seismic Investigations, Geodesy, and 
Heat Transport mission) landing site (Golombek et al., 2020; Warner et al., 2022). There, the rover had difficul-
ties penetrating its heat flow probe into the subsurface owing to insufficient friction (Spohn et al., 2022). Indi-
rect methods of detecting ice and other mineral cements include analyses of neutron detection, thermal inertia, 
geomorphic, and radar data (Morgan et al., 2021). Other indirect methods exploit the sensitivity of geomechanical 
properties to cements, which influence geophysical properties such as seismic velocity, electrical conductivity, 
and gravity. For example, Manga and Wright (2021) used seismic velocities interpreted with rock physics models 
for fractured rocks to infer that there is likely no ice-saturated cryosphere in the 0–7.5 km depth range beneath the 
InSight landing site, though they suggested that some mineral cement could be present at greater depths.

Here we study the presence and quantity of mineral and ice cements in the upper 300 m of the Martian crust by 
interpreting seismic velocity models derived from data collected by the seismometer deployed by the InSight 
lander. We interpret the seismic velocities using rock physics models for both fractured rocks and sediments. 
We also interpret seismic velocities using a theoretical relationship between dry-frame Poisson's ratio and grain 
contact forces in sediments. Figure 1 based on results from Hobiger et al. (2021) shows their derived seismic 
velocities beneath InSight and the inferred stratigraphy and lithology. Shear wave velocities Vs generally increase 
from ∼0.3 km/s at the surface to ∼1.7 km/s at 175 m; compressional wave velocities Vp increase from ∼0.8 km/s 
to ∼3.8 km/s within the same depth. At least two low velocity zones exist from 0 to 157 m and 175–300 m, 
where Vs decreases to ∼0.4 km/s and Vp decreases to ∼0.8–0.9 km/s Hobiger et al. (2021) interpreted the higher 
and lower velocity layers as fractured basalts and sediment, respectively (Figure 1d), consistent with geological 
mapping (Warner et al., 2022). Our interpretations of these seismic velocities are that sediments within the upper 

Figure 1.  Models of (a) Vs and (b) Vp from Hobiger et al. (2021) and (c) calculated Poisson's ratio based on the seismic 
velocities. The black and gray curves are Hobiger et al. (2021)'s maximum likelihood and maximum a posteriori models, 
respectively (d) Inferred stratigraphy of the upper 300 m beneath InSight, from Hobiger et al. (2021).
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300 m of the Martian crust are gas-filled; mineral or ice cements likely do not exist at grain contacts and there is 
no evidence for any ice-saturated cryosphere.

2.  Methods
2.1.  Inferring Subsurface Properties Using Rock Physics Models

We compare measured with theoretically modeled Vs and Vp to infer the mechanical properties of the upper 
300 m beneath Insight, constraining uncertainties with Monte Carlo analyses. For sediments, we assume a poros-
ity reduction profile for Mars, predict seismic velocities with that assumed profile, then compare modeled to 
measured velocities within the lower velocity zones. For fractured basalt layers, we create rock physics templates 
that relate seismic velocities, porosity ϕ (0%–50%), and fracture shape represented by elliptical inclusions with 
an aspect ratio, defined as the short axis divided by long axis, α = 0.01–1. We use the templates to identify the 
combinations of porosity and fracture shapes that could explain both measured Vp and Vs within the higher veloc-
ity zones.

We compute Vs and Vp from
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where ρi and ϕi are densities and volume fractions of the ith constituents, respectively.

Rock physics theoretical models predict dry-frame shear and bulk moduli (μ and κ); μe = μ and κe = κ for dry 
rock (Biot,  1956; Gassmann,  1951). We use Hertz-Mindlin's (Mindlin,  1949) rock physics models for unce-
mented sediments. We use the contact cement model (Dvorkin & Nur, 1996) for sediments with cement that 
completely surrounds grains that are in contact or cement that only exists at grain contacts. We use the Berryman 
self-consistent model (Berryman, 1980) for fractured rocks. The equations for the rock physics models are in 
Mindlin (1949), Dvorkin and Nur (1996), and Berryman (1980).

We use Gassmann-Biot fluid substitution theory (Biot, 1956; Gassmann, 1951) to calculate effects of fluid satu-
ration on κ (i.e., κe for liquid water saturated rocks),
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2

 , κm, and κf1 are the bulk moduli of the saturating fluid (liquid water in our case), mineral(s), and gas 
(0 kPa), respectively. Gassmann-Biot theory assumes that fluids are not flowing and minerals and fluids homo-
geneously distribute within rocks (Biot, 1956; Gassmann, 1951).

The models' input parameters are porosity ϕ, coordination number cn (average number of grains in contact), effec-
tive pressure P, mineral Poisson's ratio νm, cement fraction cf, mineral bulk κm and shear μm moduli, pore aspect 
ratio α, and grain roughness fraction f (i.e., percentage of grain contacts that allows tangential slip, which we 
assume to be 0% or 100% to model end-member ranges). We assume porosity ϕ at the surface (critical porosity 
ϕc) is between 0.3 and 0.5 (Golombek et al., 2018; Lewis et al., 2019; Lognonné et al., 2020; Smrekar et al., 2019) 
and that ϕ exponentially decays with depth z,
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where k is a compaction constant (2.82 km) scaled to Mars' gravitational field (Clifford, 1986). Effective pressure P is

𝑃𝑃 = 𝜌𝜌𝜌𝜌𝜌 − 𝑝𝑝𝑓𝑓� (6)

where g, h, and pf represent Mars' gravitational acceleration (3.71 m/s 2), depth, and fluid pressure, respectively. 
We constrain coordination number cn empirically (Murphy, 1982)

𝑐𝑐𝑛𝑛 = 20 − 34𝜙𝜙 + 14𝜙𝜙2.� (7)

The minerals that we use in the models and their respective κm and μm in GPa are calcite cement (71.6 and 28.2), 
basalt grains and rocks (80.0 and 40.0), and ice cement (8.7 and 3.8) (Vanorio et al., 2003; Zong et al., 2017). These 
are some of the main minerals expected within the upper 300 m of the Martian crust (Golombek et al., 2018; Pan 
et al., 2020; Tanaka et al., 2014); we also consider other cements listed in Table S1 in Supporting Information S1. 
We calculate mineral Poisson's ratio from

𝜈𝜈𝑚𝑚 =
3𝜅𝜅𝑚𝑚 − 2𝜇𝜇𝑚𝑚

6𝜅𝜅𝑚𝑚 + 2𝜇𝜇𝑚𝑚

.� (8)

We use Monte Carlo analyses to constrain the effects of input parameter uncertainties on the velocities predicted 
by the rock physics model for cemented and uncemented sediments. In each of our 10,000 realizations, we 
randomly generate and use a new input parameter value between their ranges. We generate new ϕ-depth profiles 
from the selected ϕc. Coordination numbers, bulk densities, and effective pressures change with ϕ-depth profiles.

2.2.  Inferring Subsurface Properties From Poisson's Ratio

We infer the volume fraction of cemented grain contacts from the relationship between Poisson's ratio νd and f, 
the volume fraction of rough versus smooth grain contacts. Rough (smooth) grain contacts resist (allow) elastic 
tangential grain contact slip during seismic wave propagation. We conjecture that, in the absence of cemented 
grains, Martian sediments comprise nearly 100% smooth grain contacts. We make this conjecture because Mars' 
gravitational acceleration (3.7 m/s 2) is lower than Earth's (9.8 m/s 2). Gravitational acceleration impacts grain 
contact forces significantly (Equation  6). Assuming 100% smooth grain contacts routinely results in better 
seismic velocities predictions in shallow sediments on Earth (up to 600 m below the surface in some cases) 
(Buckingham, 2000; Majmudar & Behringer, 2005; Wright & Hornbach, 2021; Zimmer et al., 2007). Low fric-
tion at grain contacts, despite cohesion and possibly partial cementation, appears to have prevented InSight's 
heatflow probe from penetrating the shallow subsurface (Spohn et al., 2022). Given the assumptions, conjectures, 
and expectations mentioned, cements are likely one of the main causes for rough grain contacts, making f synon-
ymous with the volume of cemented grain contacts in those cases. We compute f from νm and νd for an aggregate 
of identical perfect spheres (Bachrach & Avseth, 2008; Walton, 1987)
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f decreases as νd increases (Walton, 1987). We compute νd from the measured Vp and Vs
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Our calculation assumes that there is no liquid water within the sediment layers.

3.  Results
3.1.  Inferred Pore-Filling Media in Sediments

The sediment layers most likely host grains that experience relatively low friction at contacts. Low friction 
is indicated by the observation that smooth-grained models produce better seismic velocity predictions (i.e., 
lower misfits) than rough-grained models, regardless of assumed pore-filling material (Figure 2). The differ-
ences between smooth-versus rough-grain model predictions are 0.3–0.4 km/s and 0.1–0.5 km/s for Vs and Vp, 
respectively. Low friction is also indicated by the Poisson's ratio for sediment layers, 0.33–0.41 (Figure 1). These 



Geophysical Research Letters

WRIGHT ET AL.

10.1029/2022GL099250

5 of 11

Figure 2.  Measured Vp and Vs (black and gray lines) compared to model predicted Vp and Vs for sediment whose pores are filled with gas, liquid water, 2% calcite 
cement and 98% gas, 2% calcite cement and 98% liquid water, and ice. Blue and red lines are the smooth-grained and rough-grained model results, respectively.

Comparisons between measured and modeled Vp for sediments

Comparisons between measured and modeled Vs for sediments

Maximum liklihood model 
Rough-grained model
Smooth-grained model

Maximum a posteriori model
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(A)  gas (E)  100% ice(C)  2% cement 98% gas(B)  water (D)  2% cement 98% water

(F)  gas (J)  100% ice(H)  2% cement 98% gas(G)  water (I)  2% cement 98% water
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Poisson's ratio values result in negative values (−0.55 to −0.10) for the calculated volume fraction of rough grains 
(Equation 10), which indicates that there are likely no rough grain contacts present, that the model breaks down 
for such high values, or both.

The pores within the sediment layers are most likely filled with gas (Figure 2). Modeled smooth-grained Vs for 
gas and liquid water-filled pores are within 0–0.1 km/s of measured Vs. Modeled Vp are within 0.01–0.05 km/s of 
measured Vp, assuming that gas fills the pores; assuming 100% liquid water in the pores results in Vp overpredic-
tion by 0.6–1.0 km/s. Models that assume pores are filled with 2% cement overpredict Vp and Vs by 1.4–3.0 km/s. 
Assuming that ice fills the pores results in Vp and Vs overpredictions by 2.3–3.2 km/s and 1.7–2.4 km/s, respec-
tively for the sediments.

3.2.  Inferred Pore-Filling Media in Fractured Basalts

The hypothesized fractured basalt layers could host 100% gas, 100% liquid water, 2% calcite cement and 98% 
air, or 2% calcite cement and 98% water in the fractures (Figure 3); hosting 100% ice is unlikely (Figure 4). A 
gas-filled basalt requires the narrowest range of aspect ratio and porosity combination to be consistent with the 
measured seismic velocities. A liquid water-filled basalt is consistent with the measured seismic velocities if the 
basalts' porosities are between 0.13 and 0.47 for aspect ratios between 0.03 and 1; aspect ratios increase with 
increasing porosities. A basalt hosting 2% calcite cement and 98% gas or liquid water in its fractures could explain 
the measured velocities if the porosities are 0.24–0.5. The range of possible aspect ratios increases with increas-
ing porosities. All combinations of porosities and aspect ratios for a 100% ice-filled basalt results in velocities 
that are 1.1–2.8 times higher than measured. Thus, measured Vs and Vp are too low for a 100% ice-filled fractured 
basalt.

4.  Discussion
We now discuss our most robust interpretations for the distribution of cements within the upper 300 m beneath 
InSight, considering the model assumptions and limitations. The cemented and uncemented granular media 
models assume that grains are identical spheres experiencing equal contact forces, which are idealizations for 
Martian and other sediments (Bachrach & Avseth, 2008; Day-Lewis et al., 2005; Majmudar & Behringer, 2005; 
Makse et al., 1999, 2004). These model assumptions sometimes lead to overpredictions in low effective stress 
environments on Earth (Buckingham, 2000; Majmudar & Behringer, 2005; Wright & Hornbach, 2021; Zimmer 
et al., 2007). The cementation models predict elastic moduli by homogeneously distributing the entire volume 
of cement within the sediments, which may also be too idealistic for actual sediments (Dvorkin & Nur, 1996). 
Considering the model limitations, we can still make two main interpretations: any shallow cements in Martian 
sediments likely do not adhere grains, and pores within the layers are not filled with liquid water or ice.

4.1.  Fractured Basalt Layers With up to 20% of Its Pores Filled With Ice

A seismically detectable cryosphere likely does not exist within the upper 300 m beneath InSight. This is indi-
cated by the observation that the granular and fractured media models predict velocities that are too high for fully 
ice-saturated sediments and basalt. Manga and Wright (2021) drew a similar conclusion for the upper 8 km of 
crust because their modeled Vs for an ice-saturated basalt was high compared to measured Vs. It is unlikely that 
we misinterpreted a basalt layer for an ice-saturated sediment layer; the predicted Vp for the Amazonian and/
or Hesperian basalt layer matches, but Vs is overpredicted by at least 0.5–2.3 km/s (Figures 1 and 2). A partial 
cryosphere, with up to 20% ice, could exist in the fractured basalt layers. Though the measured velocities are 
consistent with modeled velocities for a fractured basalt whose pores are filled with up to 40% ice, porosities of 
basaltic lava flows rarely reach such high values except in thin horizons where vesicles accumulate (Cashman & 
Kauahikaua, 1997) or when chemical reactions alter the minerals within the basalt and lead to higher porosities 
(Broglia & Ellis, 1990; Franzson et al., 2010). Moreover, estimated and modeled porosity for exposed Martian 
basalts and meteorites are less than 40% (Hanna & Phillips, 2005; MacKinnon & Tanaka, 1989). Limiting the 
range of porosity to up to 40% then implies that measured velocities are only consistent with a basalt with 
less than 20% of the pores filled with ice. We did not model the effects of salinity on ice and seismic veloc-
ities; increased salinity may lead to mushy ice in the pores and reduce seismic velocities, depending on the 
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Figure 3.  Rock physics model templates showing predicted Vs and Vp for a fractured basalt with various pore-filling materials. Shaded regions are the combinations of 
modeled velocities, porosities, and aspect ratios that match both the measured Vp and Vs for the higher velocity zones. Vertical scale is logarithmic.

0.5 1.0 1.5 2.0 2.5 3.0
Vs [km/s]

0.5 1.5 2.5 3.5 4.5 5.5
Vp [km/s]

Comparisons between measured and modeled Vs for fractured basalts with varying pore-�lling media

Comparisons between measured and modeled Vp for fractured basalts with varying pore-�lling media
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Figure 4.  (a–h) Rock physics model templates showing predicted Vs and Vp for a fractured basalt with varying percentages of ice within the fractures. Shaded regions are 
the combinations of modeled velocities, porosities, and aspect ratios that match both measured Vs and Vp from Hobiger et al. (2021). Vertical scale is logarithmic. Figure 
S2 in Supporting Information S1 contains rock physics model templates showing predicted Vs and Vp for a basalt whose fractures are 50% and 100% filled with ice.

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Vs [km/s]

0.5 1.5 2.5 3.5 4.5 5.5
Vp [km/s]

Comparisons between measured and modeled Vs for basalt with ice in its pores

Comparisons between measured and modeled Vp for basalt with ice in its pores
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temperatures and wetting behavior (Dou et al., 2017). We also did not consider crustal Vs anisotropy, which may 
be used to constrain the orientation of cracks (Li et al., 2022). Future studies could explore these possibilities.

Our inferences are consistent with findings from the Mars Subsurface Water Ice Mapping (SWIM) project, which 
used neutron detection, thermal inertia, geomorphology, radar surface mapping, and radar dielectric analysis to 
search for shallow subsurface ice (Morgan et al., 2021). The SWIM data compilation suggests that shallow ice is 
unlikely to be present at the near-equatorial landing site of InSight, 4.5°N. SWIM is most sensitive to the upper 
few meters, though radar reflection can probe depths greater than 100 m. Our finding that the shallowest sediment 
layer, which extends to 20–70 m, likely does not contain ice that cements grains is consistent with the SWIM map.

4.2.  Mineral Cements as Framework Grains in Sediment Layers

Most mineral cements, if they exist, likely do not adhere grains substantially. Support for this interpretation 
comes from the observation that there are likely no significant volumes of rough grain contacts in sediments, 
as indicated by the high Poisson's ratios. Additional support comes from the observation that the models with 
calcite cement at grain contacts and surrounding the grains overpredict Vp and Vs by 1.4–3.0 km/s. Other mineral 
cements (e.g., halite, ice, gypsum, or kaolinite) also likely do not adhere grains since the differences in the elastic 
moduli between calcite and other mineral cements would not lead to a 1.4–3.0 km/s increase in seismic veloc-
ities (Figure S1 in Supporting Information S1). Nodular cements and concretions that are a part of the network 
of framework grains or cements that form on grains without adhering to other grains could exist. These cement 
types would produce roughly the same seismic velocities as gas-filled sediment with the same porosity. Thus, 
any existing cements likely resulted from mineral alteration, such as hydrating minerals (Scheller et al., 2021; 
Wernicke & Jakosky, 2021), precipitating salts (Sun et al., 2019), or the formation of concretions or spherules 
(Squyres et al., 2004, 2006).

Cements could have formed at the grain contacts of Martian sediments, only to be later broken by impacts 
and strong marsquakes. For example, the impacts that formed the large Noachian basins create dynamic strains 
similar to magnitude 10 and 11 quakes and could disrupt sediment globally on Mars (Clifford,  1997; Wang 
et al., 2005). Strains from smaller, local impacts and impact gardening of the surface might also disrupt cements 
in the younger Amazonian and Hesperian sediments and basalts in the upper few hundred meters. Laboratory 
experiments show that, depending on the porosity of the sediments and degree of cementation (weakly or strongly 
cemented), the relatively low strain rates from cyclic shearing (i.e., the type of waves experienced during seismic 
events) can break weekly cemented bonds (Sharma & Fahey, 2003; Suazo et al., 2017; Suzuki et al., 2012; Zeghal 
& El Shamy, 2008).

5.  Conclusions
The presence, volume, and distribution of ice and other mineral cements in Martian sediments and fractured 
rocks may record and affect geologic processes. Seismic velocities are sensitive to cement properties, and rock 
physics models provide one approach to relate cement properties to seismic velocities. Using these models to 
interpret seismic velocities derived from InSight data, we find that any cement within the upper 300 m beneath 
InSight likely does not cement grain contacts in sediments. An ice-saturated sediment or fractured basalt layer 
likely does not exist, but fractured basalts whose pores contain up to 20% ice are possible. The findings support 
the ideas that some of Mars' past surface liquid water could be incorporated in cements that resulted from mineral 
alteration, precipitating salts, or the formation of concretions or spherules. Any cement at grain contacts was 
likely either weak and perhaps broken by impacts or marsquakes. Future studies could revisit these inferences as 
more constraints become available on the porosity, mineralogy, lithology, density, seismic velocity, and heat flow 
within the shallowest sections of the Martian crust.

Data Availability Statement
No new data was used in this study. The seismic velocity models are available in Hobiger et al. (2021).
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